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RECEIVER 

Correlation characteristics of the perturbation field in an elastic medium whose 
surface is subjected to turbulent pressure pulsations are calculated. Spectral den- 
sity of the noise signal received by a flat receiver located under an elastic layer 
of adequate thickness is determined. 

In investigations of turbulence noise it is often necessary to locate the noise receiver 
under layer of elastic material. The computation of specific systems presents consider- 
able difficulties. Qualitative results may be obtained by analyzing the solution of the 
problem of a random signal propagation in an elastic half-space, which is induced in 
the plane bounding that half-space. If it is assumed that the receiver located in an elas- 
tic medium does not disturb the acoustic field, it is possible to estimate also the spect- 
rum of the perceived signal. 

1. We introduce a rectangular system of Cartesian coordinates OXYZ whose plane 
z = 0 coincides with the half-space boundary, and the oz -axis directed along the out- 
ward normal to the half-space. Let pressure p at the boundary be a steady and steadily- 

connected random quantity whose space-time spectrum Sp (0, k,, ku) and, consequently, 
also the correlation function /?p (t, j, q) are known. We assume that the plane of the 
hydrophone is perpendicular to the oz. -axis and that the hydrophone reacts only to the 
component of stress gLL that is normal to its surface, so that for a determinate action the 

stress at the hydrophone is v= 5 r,, (r) szz (1.) ds (1. 1) 
‘h 

where yv is the electromechanical coefficient of the hydrophone and srr the area of the 

hydrophone. 
The relation between the space-time spectra S, and S, of the random quantities p 

and u,, is of the form 
s, (a,, k,, k,, z) ~~~ 1 L (w, k,, k,, z) 1’ SP ((0, kxt k,’ (1.2) 

where (I, (w, k,, I;,, Z) is the medium transfer function. Since the plane of the hydro- 
phone is normal to oz, its insertion depth 1 z ( in the elastic medium is a parameter of 

function L. We define the space-time correlation function of quantity ozL as follows: 
m ‘u m 

n,(z,5?l)=+ s s 
‘7, (01, kx, “,,I exp [i (or + k&+K7,?ldodk,dk, (1.3) 

l s -02 --m -cc 

using (1. 1) ami (1.3) for the autocorrelation function of signal Rv (T) on ttLe h)pdropllone 

we obtain 
Rv (z) = s c 7, (r) 7, (r’) R, (r - r’ , ~1 ds,‘ds, (1.4) 

S/L s;,, 
Spectrum of the signal received by the hydrophone can be obtained by applying the 
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inverse Fourier transformation to (1.4). 
To determine function L we shall consider the case when the action at the boundary 

is of the form 
(1.5) 

Using conven~onal procedures from the equations of motion of the elastic medium [l, 21 
we obtain 

d =1- zz J&(0’ - 2r.t2kn2) (k$ -k,_*) cxp (ikg) - (I, 6) 

4r,%,2k,,klZexp (ik,,z)] fxp [i (k,~ + h-VII -t- Ot)] 

k,,= = kxz + kg2 

A = ci*k,2 (ko2 - $“B) - 2~,vC,~‘(k(j~- k[:?+ 2k/;k,J i 

where cl and et are velocities of long~~d~al and transverse waves, respectively. 
The dispersion formulas are of the form 

k12 = k ErZ -t koz -7 ma i’ c12, kt2 -;1 ktz2 i_ k,2 :-. (,)2 / ~~2 

The equality of A to zero corresponds to the dispersion equation for surface waves 

(Rayleigh waves), 
In the case of “rubberlike” media which are commonly used for the protection of re- 

ceivers, the transverse wave becomes strongly attenuated, hence, if I z I is not too small, 
it is possible to restrict the analysis to longitudinal waves only. In such approximation 
the transfer function f, can be represented in the form 

L (0, k,) = Lo (CO, k,) exp (i f&/c? - k,z 2) (1.7) 

L, = (Zk,? - 02/c,2)2 [ (Zk,* - 02/1~,‘9? + 4!$ x -f(o$‘c12 - k,‘)(02/ct? - k,z) J-1 

If the random pressure on the surface is isotropic, its correlation function depends on 

P = y EZ + TJ:, and the spectral density on 12,. Substituting (1.2) into (1.3), exchanging 
variables, and passing to the Fourier-Bessel transformation, we obtain 

m 

&(r,P)=+ 
5 

exp (ior) j 11, (61, ho, s) 1” x (I.81 
-.m 0 

Sp (0 s ko) Jo @op) ko dkodw 

In the wave zone where 1 z \ is fairly high, the region of integration with respect to 
k, can be limited to o / ~1, since for considerable k,, function I L IL rapidly decreases. 

Moreover, as shown by the analysis of the formula for L, in (1.7), f Lo 12 x 1 when 
C, / ct s 1 and 0 6 k. d U) i ct. It is known that for all media Cl / ct *> Jf2 . When 
cI I cf > 4, then in the considered interval of k, the deviation of I L, 1’ from unity does 
not exceed 6% and for cl I ct > IO it does not exceed 0.35%. 

Thus, when rr / C$ > 1 it is possible to represent approximately formula (1.8) as fol- 

(x = qd4 
A similar result was obtained in [3] for the acoustic case. 



Note that when 0 < k, < w ! CI , formula (1.6) implies that the effect of the trans- 
verse wave on uZZ compared to that of the longitudinal wave is of order of smallness of 
(cl 1 “I )-“. This justifies the previous statement about neglecting the transverse wave. 

2, Let us consider the case of isotropic turbulence. We use the following approxi- 
mation for the space-time correlation function: 

RX) tr, P) = R, =P I- (8 I r I i- ap)l 

which yields for the spectral density the formula 

Sp (o k,) = 

S, = kR, In2 

soap (fl” + (fi2)-r (a2 + k 2)-“1z 0 (2.1) 

Substituting (2.1) into (1.3) and taking into account that the integrands are even with 

respect to o, we obtain 
2&&J O” 

qy@, P) =7 
s 

o~cos(oz) 

1 p+ cl? 
0 

(2.2) 

The dispersion of’ % on the wave zone is R, (0, 0). Carrying out computations by for- 
mula (2.2), we obtain 

R, (0, 0) - arctg v/rz-- 1 ) r>l _=1 (2.3) 
& (I-++“In[(t + 1/m)r2)7-1], r<l 

r z ac/ 13 

The quantities R, (t, 0) and R, (0, p) are fairly easily obtained from (2.2). We have 
m 

R,(z,O)=R,(z,O)- II,? 

. 

s 

co3 (or) do 

o (P2 + a2) J&2 + 0%;~ 
(2.4) 

bc’ 
R,(O,P~=Rp(%Pw& s 

arctg (c,P-‘/co) Jll (Pk,) 

0 
(9 + k02)3’p 

- k,dk, 

The introduction of dimensionless time 6 = fir and coordinate r = up reduces for- 
mula (2.4) to dependence of the single parameter y = acr i p. The numerically com- 
puted relationships R, (0, 0) / R, (0, 0) and 

Fig, 1 Fig. 3 
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R, (0, xj /’ R, (0, 0) are shown in Fig. 1 in terms of 6 and x by solid and dash lines, 
respectively, for several values of y = 2n. The curve of e-’ is shown there by the dash- 

dot line. 
These curves indicate that in the wave zone the correlation time diminishes and the 

correlation radius increases. These changes are more pronounced the greater y. 
Let us determine the spectrum of signal received by the hydrophone in an idealized 

case. The receiver is assumed to be a circle of radius r0 with ideal acoustic insulation, 

and its sensitivity to be constant over its surface. If we denote the point of stress appli- 

cation by M, the quantity yV in (1,l) is defined as follows: 

Ta = 
ro=const, Mcs, 

0, M C sh 
(2.5) 

where Sh is the surface of the hydrophone. 

We substitute the expression for YO into (1.4) and taking into account the noise iso- 
tropy, pass to polar coordinates. Computations similar to those in [4] yield 

sr. 

RD (z) = 4nz~,2roa 
s 

R, (~9 PI K (P) PIP (2.6) 

0 

K (p) = arccos -$ 
0-&Vi-(*)a 

We substitute (2.2) into (2.6) and apply to the obtained expression the Fourier transfor - 
mation. We represent the spectrum of signal on the hydrophone as follows: 

(2.7) 

a = rool 1 C[, p = r,a 

1 

In the case of a point receiver, i.e. for u + 0, the integral in (2.7) increases as 1 / p, 

hence S, (oj remains finite. For defining the spectrum of the signal received by the 
hydrophone it is convenient to use the function of two variables 

(2.8) 

It can be readily verified that for u 4 1 and h --f 03 we have @ -+ ~2 I 4. If, how - 

ever, u > h, then for function A. + 00 , Q depends only slightly on parameters, and at 
the limit tends to I/~. Curves of @ computed by formula (2.8) are shown in Fig. 2 in 
terms of h for several values of u = P. Taking into account (2.8) we can represent 

formula (2.7) in the form 

s73 (0) = 2s @ro2j To2 $ @2 + (+) sop LB(y, ,,,) 
(2.2) 

We determine the dispersion of the signal received by the hydrophone by formula (2.6) 
setting z = 0. Substituting (2.6) into formula (2.2) and carrying out necessary compu- 
tations, we obtain 
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Curves of the set of functions q (YJ obtained by these computations are shown in 
Fig. 3 for several vaues of parameter rOR z P . 

3, IA US consider the more general case, when the turbulent pressure at the bound- 
ary is not isotropic. The direction coincident with the stream velocity and perpendicular 

to it is usually selected. In such case it is more convenient to represent (1.4) in the 
form 

7l’,, (r) -1 \’ \’ r,, (X‘S !/l) ,rl, (J-1 + Fx !/1 + ri) 7<, (‘, ‘1, 7‘) ds, h/,4 dq ., * i , I, “ii 
Let us consider the function that defines the hvdrophone effect 

@ (5‘ ‘1) : r; Ta (fls ?/I) r,,(.q + 5, (I, + q) dr, dy, 
* (3.1) 
u it 

Applying to R, (z) the Fourier transformation and allowing for (3. l), we obtain 

SD(w)= Sw(~,rl)r(4,11,O))d~d~ (3.2) 
% 

m m 

S, (W k,, $,) exl’ ti (k$ + Q)l dk, dk,, 
--m --cc 

which represents the relative spectral density of oZZ in the receiver plane. Since func- 
tion 13~. outside region sir is zero, the integral over the surface .sii can be replaced by an 

integral with infinite limits. 

7K3 I 

I 

6 ’ 

11F4 a?- 
JO IOi 7 

Fig. 3 Fig. 4 

Allowing for (1.2) from (3,2) we have 
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co rv 

so (0) = $ s s % (kx, k$ Ls, @‘x, kp 0) 1 ~5 (kx, k,, co, z) I2 dklc dkl, (3.3) 
--m --?o 

@, (k,, k!,) = r [ 0 (5, q) exp ii (k & + kg)1 dt drl 
-cc --co 

According to [5] a turbulent stream generates at the boundary a pressure whose relative 
spectral density can be represented as follows: 

l-0 (I, Y, (0) = s,, ((0) exp [- (a lx I + B I ?/I) 0 1 V,l X cos (W.r / lC) (3.4) 

where 1,. is the convective velocity. The space-time spectrum of pressure at the boun- 

dary sp in (3.4) is of the form 
i s, (0) r$0” / VC2 

s, (“T! &,. 0) = y (Bo, 1’ )” + k 2 x 
C ?I (3.5) 

To obtain the signal spectrum at the hydrophone located in the wave zone, where 
h-Y < (I, i rl and ,k, < (I) / cl , we substitute (3.5) and (1.7) into (3.3). According to 
[5] the convective velocity varies within the limits 0.6 V, < V, < v, , where Y, is the 

stream velocity. Usually d0 4 c[, hence terms of order (I/,: / C-L)’ can be neglected in 

the product SP 1 L I0 . 
The space-time spectral density in the wave zone is obtained by substituting (3.4) 

and (1.7) into (1.2). Taking into consideration what was said above, we obtain the ap- 
proximate formula 

1 

211’,2S, (0) 

S,(o, k,) z zp (1 + CG) d ’ ko< o/c, (3.6) 

0. Ii, > (1) /Cl 

The signal spectrum at the hydrophone can be presented, with (3,3) taken into account, 
in the form 

sv (0) = 
ZVCW, (0) 

anp (1 + 22) (02 ss % (k,, kr,) d’cx dk, (3.7) 
01 

where o, is a circle of radius (V / CL) . In the case of the idealized hydrophone whose 
sensitivity is defined by formula (2.5), function 8 (E, q) depends on p -= 1/E” + n2. 

Hence further computation in which formulas (3. l), (3.3) and (3,7) are used , are simi- 
lar to those used for deriving formula (2.9) for Sv (01 in the case of an isotropic pres- 
sure field. After necessary computations we obtain 

($S&,Y(~), Y(l,_&wdi 

It can be readily shown that for h. A 0 
Ii 

qr =: IpI _; l/s (1 -- ‘/“k2) 

When i; --. 00, then qr z qrs == ~2 ,’ 2. Function ?y (h) is shown in Fig. 4. 
Since for V. 4 CL the field oZZ, as implied by (3. 6), is isotropic, formula (1.8) can 

be used for obtaining its correlation function. If in (3.4) function S, (0) is even, then 
by substituting (3.6) into (1. S), we obtain 



698 

XV,2 m s (0) 
R, tt, p) = p (1 + a%) crp 5 .-z-.-- Jr F COS(WC) do 0 

0 
(1 

The dispersion of quantity o,, can be found from the last formula by setting in it t ~.- 0 
and passing to the limit for p - 0 . We have 

The obtained results have a simple physical interpretation. The layer of elastic me- 
dium lying over the receiver is an additional filter which transmits only those compo- 
nents of the external random field of pressures which satisfy the inequality w > k,cz. 
This results in further suppression of low-frequency perturbations, as compared to the case 
when the receiver is directly subjected to a turbulent flow. 
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Two variational principles of Hamilton type are presented for a nonlinear theory 
of elasticity, which are combined variational principles of the initial and per- 
turbed states of elastic body motion. 

Variational formulations of problems to determine the perturbed state of stress 
for a specified initial linear state are well-known in statics. Variational formu- 
lations have also been considered recently for the cases of a nonlinear and time- 

dependent initial state of stress [l - 81. Only quantities in the perturbed state 

are subjected to variation in the appropriate variational principles. 
In order to avoid determining the initial state of stress in the definition of the 

neutral equilibrium state, varying second-order displacements were additionally 


